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Abstract

In this paper, the global method of generalized differential quadrature (GDQ) is applied to simulate the natural convection in a
square cavity. The vorticity-stream function equation is taken as the governing equation. There are two boundary conditions
(Dirichlet type and Neumann type) for the stream function at each boundary. Two approaches are introduced to implement these
two boundary conditions. The first approach converts the two boundary conditions into a two-layer condition. For the second ap-
proach, the Neumann condition is built into the GDQ weighting coefficient matrices which are then used to discretize the stream
function equation. Thus, the Neumann condition is exactly satisfied in the second approach. The performances of two approaches
such as the accuracy and efficiency are comparatively studied in this work. © 1998 Elsevier Science Inc. All rights reserved.
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Notation

)ln)

i weighting coefficients of the nth order derivative with

respect to x
weighting coefficients of the mth order derivative
with respect to y

—imm)
i

S nth order derivative of function f with respect to x
A mth order derivative of function / with respect to »
M number of mesh points in y direction
N number of mesh points in x direction
Nu the average Nusselt number throughout the cavity

Nu, » the average Nusselt number on the vertical mid-plane
of the cavity

Nug the average Nussclt number on the vertical boundary
of the cavity at x =10

Nung.  the maximum value of the local Nusselt number on
the boundary at x=0

Nupin the minimum value of the local Nusselt number on
the boundary at x =0

Pr Prandtl number

Ra Rayleigh number

X x coordinate

V v coordinate

T temperature

u, v velocity components in ., y directions
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Umay the maximum horizontal velocity on the vertical mid-
plane of the cavity

Cinax the maximum vertical velocity on the horizontal mid-
plane of the cavity

0 vorticity

W stream function

[Wamial  the stream function at the mid-point of the cavity

the maximum absolute value of the stream function

‘m;\\

1. Introduction

Most numerical simulations of engineering problems can be
currently carried out by conventional low order finite differen-
ces and finite elements using a large number of grid points.
However. in some practical applications, the numerical solu-
tions of partial differential equations are required at only a
few specified points in the physical domain. For acceptable ac-
curacy. the conventional low order methods still need to use a
large number of grid points to obtain accurate solutions at these
specified points. In seeking a more efficient method using just a
few grid points to obtain accurate numerical results. the tech-
nique of differential quadrature (DQ) was proposed by Beliman
et al. [1]. The DQ method follows the concept of classical inte-
gral quadrature. DQ approximates a spatial derivative of a
function with respect to a coordinate at a discrete point as a
weighted linear sum of all the functional values in the whole do-
main of that coordinate direction. The key to DQ is to deter-
mine the weighting coethicients for any order derivative
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discretization. Bellman et al. [1] suggested two methods to de-
termine the weighting coefficients of the first order derivative.
The first method solves an algebraic equation system. The sec-
ond uses a simple algebraic formulation, but with the coordi-
nates of grid points chosen as the roots of the shifted
Legendre polynomial. Most previous applications of DQ in en-
gineering [1-5] used Bellman’s first method to obtain the
weighting coefficients because it lets the coordinates of grid
points be chosen arbitrarily. Unfortunately. when the order
of algebraic equation system is large, its matrix is ill-condi-
tioned. Thus, it is very difficult to obtain the weighting coeffi-
cients for a large number of grid points using this method. To
overcome the drawbacks of DQ method in computing the
weighting coefficients, Shu [6] presented the generalized differ-
ential quadrature (GDQ), in which all the current methods
for determination of weighting coefficients are generalized un-
der the analysis of a high order polynomial approximation
and the analysis of a linear vector space. GDQ uses two sets in-
stead of one set of base polynomials in a polynomial vector
space. As a result, it computes the weighting coeflicients of
the first order derivative by a simple algebraic formulation with-
out any restriction on choice of grid points, and the weighting
coefficients of the second and higher order derivatives by a re-
currence relationship. The major advantage of GDQ over DQ
is its ease for the computation of weighting coefficients without
any restriction on the choice of grid points. Currently, the DQ-
type methods have been increasingly applied to solve incom-
pressible flow problems [6-13] and structural and vibration
problems [14-28].

Like some other numerical methods, the GDQ method dis-
cretizes the spatial derivatives and, therefore, reduces the par-
tial differential equations into a set of algebraic equations. To
solve these equations, the boundary conditions have to be im-
plemented appropriately. For the case where there is only one
boundary condition at each boundary, the implementation is
very simple and can be done in a straightforward way. One just
needs to replace the discretized governing equations by the
boundary conditions at all the boundary points. However, in
some cases, there are more than one boundary conditions at
each boundary, which could result in difficulties in the numer-
ical implementation of the boundary conditions. One example
is the solution of two-dimensional incompressible Navier
Stokes equations. Although the governing equations arc sec-
ond order partial differential equations, there are two boun-
dary conditions for the stream function at each boundary.
These two boundary conditions are derived from the boundary
condition for two velocity components. Among them, one is of
a Dirichlet type and the other is a Neumann type. To imple-
ment these two boundary conditions accurately, Shu et al. [8]
proposed an approach which converts the two boundary con-
ditions into two-layer numerical boundary conditions. Very
accurate numerical solutions have been obtained by this ap-
proach. Another example is the flexural vibration analysis of
a thin beam or a plate. For this case, the governing equation
is a fourth order differential equation, which requires two
boundary conditions at each boundary. To apply the DQ
method to obtain accurate numerical solution of this problem,
Wang and Bert [15] proposed an efficient approach to imple-
ment two boundary conditions at each boundary. In this ap-
proach, the derivative boundary conditions are built into the
weighting coefficient matrices in the DQ discretization. Then.
only Dirichlet boundary conditions are implemented. This ap-
proach has been successfully applied to solve some beam and
plate problems with very good accuracy. However, as indicat-
ed by Wang and Bert [15]. there are some limitations to the ap-
plication of this approach. One limitation is in the
implementation of the clamped-clamped (C-C) type boundary
conditions. It was found that the implementation of the C-C

type boundary conditions by this approach may lead to some
wrong numerical results.

Although the performance of the approach proposed by
Wang and Bert [15] 1s well studied in the vibration analysis,
its performance in the numerical computation of incompress-
ible Navier-Stokes equations is still unknown. In this paper,
a comparative study of this approach and the approach pro-
posed by Shu et al. [8] will be made through their application
to simulate the natural convection in a square cavity.

2. Generalized differential quadrature

The GDQ approach was developed by Shu [6] based on the
DQ technique [1]. It approximates the spatial derivative of a
function with respect to a space coordinate at a given grid
point as a weighted linear sum of all the functional values at
all grid points in the whole domain of that space coordinate.
The computation of weighting coefficients by GDQ is based
on the analysis of a high order polynomial approximation
and the analysis of a linear vector space. The weighting coeffi-
cients of the first order derivative are calculated by a simple al-
gebraic formulation, and the weighting coefficients of the
second and higher order derivatives are given by a recurrence
relationship. The details of GDQ method can be found in [6].
Some two-dimensional results are described as follows. For a
smooth function flx. y), GDQ discretizes its nth order deriva-
tive with respect to x, and the mth order derivative with respect
to v, at the grid point (v, y;) as

N
Py = el flr). n= 120 N~ (1a)

kel

A
L) =D @ ). m=1.2. M~ 1 (1b)
kil
fori=1.2....N: j=12....M
where N, M are the number of grid points in the x and y direc-
tion respectively, ¢, @ are the weighting coefficients to be
determined as follows,
Weighting coefficients for the first order derivative
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Weighting coefficients for the second and higher order deriv-
atives
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When /=i, the weighting coefficients are given by

N
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M
at==-3a", i=12..M m=12..M-1L
=l y#i
(4b)

It is obvious from the above equations that the weighting
coefficients of the second and higher order derivatives can be
completely determined from those of the first order derivatives.
When the coordinates of grid points are known, the weighting
coefficients for the discretization of derivatives can be easily
calculated from Eqgs. (2a), (2b), (3a), (3b), (4a), (4b). Then
using Eqs. (1a) and (1b), all the spatial derivatives can be dis-
cretized using a similar form. The difference for the respective
derivatives is to use different weighting coefficients, which are
usually computed in advance. This avails as an easily imple-
mentable scheme on the computer with greatly simplified
code-editing features.

When the functional values at all grid points are obtained,
it is easy to calculate the functional values in the whole compu-
tational domain with high order of accuracy in terms of the
polynomial approximation, i.e.

(x.¥)) Zf Xy )ri(x (5a)
M
Slnr) = n)s ). (sb)
o1
N oM

[ (x,») ZZ[ x,,v, r(x)s,(v), (5¢)

where r{x), A,U) are the Lagrange interpolation polynomials in
the v and y direction, respectively. Eqs. (5a)—(5¢) will be used
to calculate the flow parameters at any specific point without
losing accuracy since the GDQ approach is also based on
the above approximation.

3. Governing equations and numerical discretization

The buoyancy driven flow in a square cavity with vertical
sides which are differentially heated is a suitable vehicle for
testing and validating numerical approaches used for a wide
variety of practical problems. This problem has been extensive-
ly studied by many researchers such as illustrated in the paper
of Davis and Jones [29] which outlined numerous contributed
results reported at the second Conference on Numerical Meth-
ods in Thermal Problems. The problem being considered here

is that of the two-dimensional flow of a Boussinesq fluid of

Prandt] number 0.71 in an upright square cavity described in
non-dimensional terms by 0 < v < 1, 0 < »y < | with »
vertically upwards. The problem definition and the boundary
conditions are displayed in Fig. 1. The non-dimensional vorti-
city-stream function formulation and the cncrgy transport
equation are used to compute this problem, which can be writ-
ten as

[¢0) [20] Jw Fo  Po By )
Ty - Ra Pr— :
o T Mox oy Pr( o oy ) +RaProc. (o)
Py l// ‘
Ox? t o N’ - (6b)
or oT or  O*'T 0T

’ (6¢)

‘—+M,'+L‘—‘:{ +(,,
ot Ox vy Ix Oy

where w, W, T, Pr and Ra are the vorticity, stream function,
temperature, Prandt] number and Rayleigh number, u, v are

oT
u=0v=0—=90
dy
u=0 u=0
V= v=
=] T=0
oT

u=0v=0—=0
dy

Fig. 1. Configuration of natural convection in a square cavity.

the components of velocity in the x and y direction, which
can be calculated from the stream function

Oy oY
1475. L= (7)
Eqgs. (6a)-(6¢) is subjected to initial conditions
o=y=T=u=r=0, whenr=0 (8)

and boundary conditions for ¢ > 0,

)
=0 To1 wr=0 0<y<l. (9a)
) ,
b= 0 70 atx=1 0<y<l, (9b)
Ox
gy OT

bW O =0 D<x<l. (9¢)
dy Oy

It is noted that at each boundary, Egs. (9a)+9¢c) give one
boundary condition for temperature 7, and two boundary
conditions for stream function ¥ although the governing equa-
tion for ¥ is just second order.

Applying the GDQ method to discretize the spatial deriva-
tives in Egs. (6a)—(6c) gives

v M

dm,/ o nr
dr + Uy E Cyp O+ i Y C iy

k| (3
N

=Pr Z( OIS Z @ wa| +Ra PrZ< 2T (10a)

k-1

Z ", + Z*' W = o). (10b)
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Sy a0 -wl) {2) ()
*”u§ ey T + ”1/ Ty Ty = § ey Ty + _5_ i Tu
il

dr

(10c)
fori=12....N. j=12.....M,
where N, M are the number of grid points in the v and y direc-

tion respectively, c;; are the weighting coefficients of the nth
order derivative of a function with respect to x, and ¢ are
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the weighting coefficients of the mth order dertvative of a func-
tion with respect to y. Similarly, the derivatives in Egs. (9a)
(9¢) can be discretized by GDQ method. In numerical simula-
tion, the boundary conditions for @ are obtained from
Eq. (10b). Using Egs. (9a)—(9¢) and (10b) gives the boundary
conditions for v as

N
W= ey, forj=12,....M (11a)
k=1
N ,
oy =Y gy, forj=1,2,....M, (11b)
k=1
A
Wy =Y Ty, fori=23, N -1, (1)
k=
M 5
Wiy =Y Ty, fori=23. N-1 (11d)
=1

The boundary condition for 7 at x =0 and x=1 can be easily
implemented by

Tiy=1Ty;=0 forj=12 ... M. (12a)

The derivative conditions for T at y=0 and y=1 are discret-
ized by the GDQ method and then combined to give

M-

1 )i 1
nl:A—YTl:AZ< ‘IA’ MM

Fki'fﬁ'b)ﬁ} (12b)

LS (bl
Ty = AVT It;(("u; . 1’ (11\C(44’|>TA (12c)

fori=2.3.....N -1,
where

(= (D

AYT = €\ 1C 4 — Ty (Cop s

The implementation of boundary conditions for stream func-
tion will be discussed in the following section.

4. Implementation of boundary conditions for the stream
function

In this section, two approaches will be used to implement
the boundary condition for the stream function. As shown in
Egs. (9a)-(9c), there are two boundary conditions for i at
each boundary. Numerically, the Dirichlet condition can be
easily implemented by

W, =0.
fori=1.2.....N; j=23,....M—1.

Yy =00 oy =00 4y =0 (13)

Eq. (13) will be applied by both approaches exactly at the
boundary point. The Neumann condition will be treated differ-
ently by two approaches which are shown as follows.

4.1. Two-layer condition from GDQ discretization of Neumann
condition

For this approach, Eq. (13) gives the first layer condition at
all boundary points, and the Neumann condition in Egs. (9a)
(9c) is discretized by the GDQ method and then combined to
provide the second layer condition. Applying the GDQ meth-
od to discretize the derivative in Neumann condition gives

C‘:ll.l\"tblﬂL‘lﬂ‘p "‘ZHA'/’A, T (1 vy 1/+(1 'ﬁ\, =
(14a)
for the boundary of x =0,
C.{wl'."ll/’l, +‘w~'f/ + Z NVt ‘\ v W, +fo”&‘/1~:, =0
(14b)
for the boundary of x=1,
E“;V/n +‘(1l~"// + Z(u'r// & T(1 ao Wi +Cllli1 i =0
(14c)
for the boundary of y =0, and
Ty 1¢ +7 M. ”‘// + Z‘ (ilt./\ Wiy + Z;flll.).ll Wi 1 E‘/:L/I{).lll/)p w=0
(14d)

for the boundary of y=1.

Substituting Eq. (13) into Egs. (14a) and (14b), we can obtain

1 = (i1 n (RN ;
Yo, = oo (Ci.f\f('/'_,\' L= CyaChn 1)%. B (15a)
' AXN ; v /
LIS/ o il
Unors = T | Do (ehaens — eliei (15b)
T AXN ;( A H ) !

forj=1.2.....M.
where

i)ty

A7 A
AXN =530 v — oty

Similarly, substituting Eq. (13) into Eqs. (14c) and (14d) gives

R EEP -
Vin =~ [ (Z'l 2Calar 1 CaraCoy l)‘/’i.k : (16a)
AYM AZ

e

1 e i1l il :

Yisia = M [Az: (( A k€Y ’J "'1.4)‘7.\/.:)WA (16b)

fori=23.....N—1.
where
AYM = E,tl/li)li‘l?/\}i 1 ?‘lll‘:ll Mot
Eqs. (15a) and (15b) and Egs. (16a) and (16b) provide the so-
lution at a layer adjacent to the boundary. It is noted that
when this approach is used, Eq. (10b} can only be applied
for the interior points 3<i<N —2. 3<j<M — 2. For the
convenience of following discussion, this approach is termed
the “two-layer approach™.

4.2, One-layer condition from modified weighting coefficient
matrices

For this approach, only the Dirichlet condition (Eq. (13)) is
implemented at the boundary point. The Neumann condition
is built into the GDQ weighting coefficient matrices, which will
then be applied to discretize the stream function equation.

Consider the GDQ analog of the derivative dy/0x at the
grid points on a line y; parallel to the x-axis
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, roAn o i nE
{0y /ox), €1 €12 Cra— Cly W
Y ( ) I {
(dw/dx)z_/ 5\1111 ‘(3]21 (l:{ I (‘2%
. ‘ i1y 48] (1 Ah
(dw/dx),xu—l._/ C:;\"—l.l Cyoy2 7 Cyvawn g Cyaw
( Ix), (n in (L NN
(dw/dx)‘“ L Cnl Cya o Oy oy

l/jl./

l/llk/

(17)
Wy,
Yy,

To satisfy the derivative condition of y (Egs. (9a) and (9b)),

Eq. (17) can be modified by zeroing the first and last rows of

the matrix

(W), T 0 R | 0
(O] 0x),, cg'f (";ﬁ

(O /0x)y (’\1)]] "(w;l.z T Oy Gyl
(O /0x),,, Lo o - 0 0
!//l./
s,

(18)

lp,’\’ 1.;
2y

The modified matrix in Eq. (18) is noted as [4'] while the orig-
inal matrix in Eq. (17) is represented by [4']. The matrix form
of Eq. (18) can be written as

{oy/ox}, = (A1}, (19)

Similarly, the matrix form of GDQ analog of the derivative
JP/0x* at the grid points on a line p; parallel to the v-axis
can be written as

{Pp/ox'} = 481}, (20)
where [47] is the modified GDQ weighting coefficient matrix
for the second order derivative 9%1//3x*. On the other hand,
we note that the second order derivative 3 /9x* can be ob-
tained by differentiating the first order derivative dyr/0x. Thus,
the matrix [4°] can be computed by

A7) = [4']14"). N
The above process can also be applied to modity the GDQ
weighting coefficient matrices in the y direction. Let [B'], [587]
be the original GDQ weighting coefficient matrices related to
Oyr/y and &% /0x*, [B'] , [B] be the corresponding modified
weighting coefficient matrices. Similar to Eq. (21), we have
[5°] = [8]18'], (22)

where

ro—(1) (1} = 7

=th 3 5
N €2 S I Y2 Cla
= —(n (1) -1
a3 2 M- Cau
[B'] =
—(1) L i i
Crre1n Caon Cygam-1 Cu
() 1 -1 —-(h
L Car Cya 0 Sy Copar
M0 0 e 0 0
Y i () iy
€y Can o Gy Cay
[B'] =
- (1 —th =
Syva G T Cyayma Cyelw
0 0 e 0 0

It is noted that the modified GDQ weighting coeflicient matri-
ces [4°] and [B*] are only applied to Eq. (10b). For other equa-
tions, the original GDQ weighting coefficient matrices should
be employed. Similar to the finite element method, when this
approach is applied, the derivative (Neumann) conditton is au-
tomatically and exactly satisfied. And since only the Dirichlet
condition is implemented at the boundary point. Eq. (10b)
has to be applied for the interior points, 2<i<N — 1.
2< /<M —1. For the convenience of following discussion,
this approach is called the “one-layer approach™.

5. Results and discussion

In this section, two approaches presented in the preceding
section will be used to simulate the natural convection in a
square cavity. As shown in Eqs. (11a)-(11d) and Egs. (12a)
(12¢), there is only one boundary condition at each boundary
point for w and 7. Thus, Egs. (10a) and (10b) should be ap-
plied at the interior points. 2<i<N - 1. 2< ;<M - 1. In
the present study, the set of (N — 2) x (M — 2} ordinary differ-
ential equations for v and 7 are solved by the 4-stage Runge
Kutta scheme. Eq. (10b) gives an algebraic equation system
which is solved in this work by a direct method of LU decom-
position. It should be indicated that the matrix size of
Eq. (10b) for the one-layer approach and two-layer approach
is different. For the one-layer approach, the matrix size is
(N —2) x (M —=2)by (N =2} x (M~ 2) while for the two-lay-
cr approach, the matrix size 15 (N —4)x (M —4) by
(N —4) x (M —4). It is noted that the Laplacian operator in
Eq. (10b) is a linear operator. Thus, when LU decomposition
1s used to solve Eq. (10b), we only need to decompose the ma-
trix of the equation system once and store the inverted matrix
elements for all the following computations.

For the GDQ simulation, the coordinates of grid points are
chosen as [8]

i1
1 —cos [ —— o= 120000, N. 2
[ LOS(N“IM ; (23)

j1 -
[l~cos<M7 171)} j=12.....M. (24)

In order to compare the performance of two approaches for
the implementation of boundary conditions for stream func-
tion, the following quantities are calculated respectively:

X =

2| =

b2 —
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Womal  the stream function at the mid-point of the cavity
max|  the maximum absolute value of the stream function

(together with its location)

Unmax the maximum horizontal velocity on the vertical mid-
plane of the cavity (together with its location)

Pinax the maximum vertical velocity on the horizontal mid-
plane of the cavity (together with its location)

Nu the average Nusselt number throughout the cavity

Nuy,»  the average Nusselt number on the vertical mid-plane

of the cavity
Nug the average Nusselt number on the vertical boundary
of the cavity at v =0

Nun.e  the maximum value of the local Nusselt number on
the boundary at x =0 (together with its location)
Nupi,  the minimum value of the local Nusselt number on

the boundary at x =0 (together with its location)

Since it is very hard to get an analytical expression for the
solution, the values of above variables are usually determined
from the numerical solution defined at the grid points. Obvi-
ously, to obtain these variables accurately, the mesh size
should be very large. However, as experienced in our previous
work [6--13], the main feature of the GDQ method is that it can
obtain accurate numerical solution using a very coarse mesh.
Although the GDQ solution at the coarse mesh point is very
accurate, it cannot give the accurate values of above variables.
especially for determination of maximum and minimum val-
ues. To improve this, an interpolation process is introduced
in this study. When the converged solution on a coarse mesh

is obtained. the functional values on a fine mesh of

101 x 101 are given from Egs. (5a)-(Sc). It is noted that the
use of Egs. (5a)-(5¢) will not affect the accuracy of numerical
solution since the GDQ discretization is also based on the La-
grange interpolation polynomials. In the following, all the re-
sults shown in the tables are based on the interpolated values.

Tables 1-4 list the numerical results of two approuches for
Rayleigh numbers of 10, 10*, [0°. 10°. respectively. Also in-
cluded in these tables is the bench mark solution given by Da-
vis [30]. It 1s indicated that the bench mark solution of Davis
[30] is obtained by using an extrapolation strategy from finite
difference results of different mesh sizes. Thus it can be expect-
ed that the bench mark solution is more accurate than the sin-
gle-mesh finite difference results. Tt is noted that for each case
of computation, four mesh sizes are used to obtain GDQ re-
sults. It can be seen from the tables that the convergence trend
of both the one-layer results and the two-layer results is very
apparent. As the mesh size increases, the accuracy of both

Table 1
Comparison of numerical results for Ra = 10°

numerical results is improved. It was found that, as compared
to the bench mark solution, accurate numerical results of all
the cases can be obtained by two approaches using a relatively
small number of mesh size. This can be attributed to the fea-
ture of the GDQ method. Since the GDQ method is a global
method, the order of truncation error in its discretization is
very high. That is, the number £ in the truncation error expres-
sion of O[(As)*] is very large. Thus, to limit the truncation er-
ror to a given criterion, the spacing of mesh points As can be
relatively large since 4 is large. In other words, a small mesh
size can provide a high order of accuracy for numerical solu-
tion,

[t was also found that the one-layer approach performs
very well in the numerical simulation of natural convection
problems. Unlike the case of vibration analysis with
clamped-clamped boundary conditions, no spurious solution
was found in this study when the one-layer approach is ap-
plied. Actually, it can be observed from Tables 1-4 that for
all the cases, although the one-layer and two-layer results agree
very well with the bench mark solution, the one-layer ap-
proach gives better accuracy than the two-layer approach. This
phenomenon can be analyzed as follows. The error of numer-
ical results to the true solution of a partial differential equation
15 due 1o the truncated error arising from the numerical discret-
ization of derivatives in the partial differential equation and
the boundary conditions. In the one-layer approach, the deriv-
ative conditions are built into the weighting coeflicient matri-
ces. which are exactly satisfied without any numerical
discretization while in the two-laver approach, the derivatives
in both the partial differential equation and the boundary con-
ditions are discretized by GDQ with high order of accuracy.
So. we can see that the numerical errors in the one-layer ap-
proach are only contributed by the discretization of the deriv-
atives in the partial differential equation while the numerical
errors in the two-layer approach are contributed by the discret-
ization of derivatives in both the partial differential equation
and the boundary conditions. It can be expected that the
one-layer approach provides less numerical errors than the
two-layer approach. That is probably the reason that the
one-layer approach gives more accurate numerical results.
However, the improvement of accuracy by the one-laver ap-
proach cannot be seen in the flow patterns near the boundary.
Both approaches give the same flow patterns. The isotherms
and streamlines of Ra =: 107, 10°. 107, 10" are shown in Figs. 2
and 3.

Although the one-layer approach gives better accuracy than
the two-layer approach, it does come with a price. In the pres-
ent study, the unsteady Navier Stokes equations are solved

Two-layer approach

One-layer approach Davis [30]

Mesh Tx7 9%x9 11 x11 13x13
[rosia 1.180 1.173 1.173 1.175
Uias 3.669 3.660 3.642 3.649
v 0.810 0.815 0.815 0.815
Lanas 3710 3.690 3.690 3.698
X 0.180 0.180 0.180 0.180
Nu 1.123 1118 0.118 0118
Nuy,» 1.121 1.117 0.117 0.118
Nug 1100 1.117 0.117 0.118
NUpax 1.495 1.505 1.505 1.506
¥ 0.085 0.085 0.085 0.090
NUpyin 0.683 0.690 0.690 0.691

T 1.000 1.000 1.000 1.000

7x7 9%x9 11 x 11 13 %13

1.176 1.174 1.174 1.175 1.174
3652 3.650 3.646 3.649 3.649
0.815 0.815 0.815 0.815 0.813
3.700 3.694 3.694 3.698 3.697
0.180 0.180 0.180 0.180 0.178
1123 0.118 0118 0.118 0.118
1.120 0.117 0.117 0.118 0.118
L. 100 0.117 0.117 0.118 0117
1.515 1.507 1.506 1.506 1.505
0.090 0.090 0.090 0.090 0.092
0.684 0.690 0.690 0.691 0.692
1.000 1.000 1.000 1.000 1.000
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Table 2
Comparison of numerical results for Ra=10*

Two-layer approach One-layer approach Davis [30]
Mesh 9%x9 11 x t1 13x13 15x 15 9%x9 1 x It 13x 13 15 %15
[Wimial 5.022 5.055 5.077 5.075 5.042 5.064 5.075 5.075 5.071
Umax 15.964 16.130 16.189 16.190 16.130 16.155 16.181 16.190 16.178
¥ 0.820 0.825 0.825 0.825 0.825 0.825 0.825 0.825 0.823
Umax 18.947 19.462 19.668 19.638 19.462 19.530 19.626 19.627 19.617
X 0.115 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.119
Nu 2.216 2.236 2.249 2.245 2.210 2.239 2.248 2.245 2.243
Nu, 2 2.207 2.246 2.250 2.245 2.119 2.248 2.249 2.244 2243
Nuy 2.075 2.205 2.262 2.248 2052 2.206 2.261 2.248 2.238
Ny 3.185 3.449 3.571 3.543 3.287 3.423 3.571 3.543 3.528
¥ 0.095 0.155 0.150 0.145 0.100 0.160 0.150 0.145 0.143
Nupin 0.652 0.567 0.575 0.586 0.673 0.570 0.575 0.586 0.586
¥ 1.000 1.000 £.000 1.000 1.000 1.000 1.000 1.000 1.000
Table 3
Comparison of numerical results for Ra = 10°

Two-layer approach One-layer approach Davis [30]
Mesh 17 x 17 19 < 17 21 x 17 21 x 19 17 x 17 19 x 17 21 x 17 21 x 19
[Wmia| 9.114 9.123 9.116 9.117 9.113 9.119 9.115 9.116 9.111
[Wimex| 9.618 9.626 9.617 9.618 9.614 9.621 9.616 9.617 9.612
Ry 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.285 0.285
¥ 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600
Unmax 34.701 34.754 34.730 34.736 34.689 34.727 34,710 34.730 34.730
¥ 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855
Uax 68.956 68.756 68.640 68.640 68.670 68.670 68.640 68.640 68.590
X 0.065 0.065 0.065 0.065 0.065 0.065 0.063 0.065 0.066
Nu 4.538 4.529 4.527 4.523 4.533 4.529 4.526 4.523 4.519
Nuy,» 4.537 4.535 4.530 4.524 4.533 4,532 4.530 4.524 4.519
Nuyg 4.566 4.553 4.528 4.527 4.562 4.551 4.527 4.527 4.509
Nujax 7.761 7.859 7.790 7.788 7.760 7.865 7.790 7.789 7717
¥ 0.095 0.085 0.080 0.080 0.090 0.090 0.080 0.080 0.08]
Nutmin 0.685 0.705 0.715 0.725 0.685 0.704 0.715 0.725 0.729
¥ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Table 4
Comparison of numerical results for Ra= 10°

Two-layer approach One-layer approach Davis [30]
Mesh 17 x 17 19 x 17 21 x 17 21 x 19 17x 17 19 % 17 21 % 17 21 x 19
[¥rmia 15.960 16.070 16.240 16.270 15.920 16.080 16.240 16.280 16.320
[ s 16.356 16.478 16.667 16.714 16.344 16.492 16.663 16.714 16.750
X 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.151
¥ 0.545 0.545 0.545 0.550 0.545 0.545 0.545 0.550 0.547
Urnax 64.465 63.900 64.150 64.775 64.250 64.060 64.378 64.891 64.630
¥ 0.850 0.845 0.845 0.850 0.850 0.850 0.845 0.850 0.850
Cmax 208.92 216.40 220.62 220.64 21313 216.63 219.19 219.20 219.36
X 0.040 0.035 0.035 0.035 0.040 0.035 0.035 0.035 0.038
Nu 8.638 8.713 8.794 8.762 8.557 8.699 8.795 8.759 8.800
Nuy» 8.676 8.745 8.797 8.727 8.582 8.713 8.782 8.716 8.799
Nuy 8.092 8.466 8.778 8.721 8.195 8.367 8.754 8.722 8.817
Ny 15.441 15.810 16.300 16.070 17.520 15.740 15.890 15.961 17.925
¥ 0.040 0.030 0.030 0.040 0.040 (.030 0.030 0.030 0.038
Nupmin 1.548 1.194 0.876 1.019 1.665 1.274 0.992 1.058 0.989
r 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

and the numerical computation is marched in the time direc-
tion until a steady state resolution is obtained. Obviously,
the larger the time step size, the faster the convergence rate.

The allowable time step size for marching in the time direction
should satisfy the stability condition. From Egs. (10a) and
(10b), it is very difficult to find a criterion from the stability
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(a) Ra=10"

l"

(¢)Ra=10°

2

(b) Ra = 10*

(d) Ra = 10°

Fig. 2. Isotherms of Ra = 10°, 10*, 10°, 10°.

analysis for the choice of time step size. In this study, the op-
timum (maximum) time step size was found through a trial-
and-error process. It is interesting to see that the optimum time
step size for the one-layer approach is quite different from that
for the two-layer approach. It was found that for all the cases,
the allowable maximum time step size for the two-layer ap-
proach is almost twice as large as that for the one-layer ap-
proach. As a result, the iteration number required for a

converged solution by the two-layer approach is about half

of that by the one-layer approach. This is a very interesting
phenomenon. Although the two approaches are only applied
differently for implementing boundary conditions of stream
function, they do have some effect on the stability condition
of vorticity and temperature equations. Obviously, this effect
is through the velocity field. Table 5 lists the allowable time
step size, iteration number and the CPU time (s) on the
DEC Alpha workstation for Ra = 10? with threc mesh sizes.
The iteration number is obtained when the following criterion
1s satisfied:

1 N—IM--1

Res = m_:.f)lz;;kes;, <107 (25)

where Res,; represent residuals of vorticity and temperature
equation, respectively. It can be observed from Table 5 that
for the same mesh size, Ar,,,, of the one-layer approach is much
less than that of the two-layer approach. As a consequence, the
iteration number of the one-layer approach is much larger than
that of the two-layer approach. It can also be seen from Table 5
that for the same mesh size, the ratio of iteration number for the

one-layer approach over that for the two-layer approach is less
than 2 (around 1.8). However, the ratio of CPU time for the
one-layer approach over that for the two-layer approach is
larger than 2 (around 2.2). This indicates that the operation
per iteration for the one-layer approach is larger than that for
the two-layer approach. The difference of operation for two ap-
proaches may be attributed to the solution of stream function
equation. In this study, the stream function equation is solved
directly by LU decomposition. As discussed earlier on, the ma-
trix size of Eq. (10b) for two approaches is different. The matrix
size of the one-layer approach is (N —2)x (M -2) by
(N —2) x (M - 2) while the matrix size of two-layer approach
is just (N —4) x (M —4) by (N —4) x (M —4). Clearly, the
matrix size of one-layer approach is much bigger than that of
two-layer approach. Therefore, the computational effort of
solving Eq. (10b) for the one-layer approach is larger than that
for the two-layer approach. For other Rayleigh numbers, it was
also found that the two-layer approach is more efficient than
the one-layer approach. This can be observed in Table 6, in
which the allowable maximum time step sizes, iteration num-
bers, and the CPU time (s) for Ra = 107, 10%, 10°, 10° are listed.
Obviously, when the mesh size is fixed, the CPU time required
by the one-layer approach is much larger than that required by
the two-layer approach.

6. Conclusions

In this paper, two approaches are introduced to implement
the boundary conditions of stream function in GDQ simulation
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(a) Ra = 10’ (b) Ra = 10*

(¢) Ra =10 (d) Ra = 10°

Fig. 3. Streamlines of Ra = 10, 104, 10%, 10°.

Table 5
Comparison of CPU time for Ra = 10* with different mesh sizes

One-layer approach Two-layer approach
Mesh sizes 1313 1515 17 x 17 13 x 13 15%x 15 17 %17
Al 1.9 % 10 1.0x 10} 5.7 x 107 36x 107 1.8 x 101 1LOx 10 ¢
Iteration numbers 1516 2150 3332 869 1207 1895
CPU time (s) 17.9 49.9 125.8 8.0 225 50.9

Table 6
Comparison of CPU time for different Rayleigh numbers
Ra Approaches Meshes Al Iterations CPU time (s)
103 One-layer 13x13 1.9 x 107} 1492 23.066
Two-layer 13 x 13 36x 107 812 8.416
10 One-layer 1515 1.0 x 103 2150 49.863
Two-layer 15 % 15 1.8 x 107 1207 21.470
10° One-layer 21 x 17 28 x 10 4808 298.023
Two-layer 21 x 17 S3x 104 2544 105.100
10° One-layer 21 % 17 29 %104 4764 284,197
Two-layer 21 x 17 S3x 10 2549 103.800
of natural convection in a square cavity. It was found in this in the GDQ discretization while for the two-layer approach,
study that the one-layer approach gives more accurate numer- the derivative condition is approximated by the GDQ method
ical results than the two-layer approach. This is because for the with high order of accuracy. Although the one-layer approach

one-layer approach, the derivative condition is exactly satisfied can provide better accuracy of numerical results. it is less
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efficient than the two-layer approach. It was found that for all
the cases, when the mesh size is fixed, the iteration number re-
quired for a converged solution by the one-layer approach is
much larger than that by the two-layer approach. In addition,
the computational effort per iteration for the one-layer ap-
proach is bigger than that for the two-layer approach. Since
the accuracy of GDQ results can be greatly improved by slight-
ly increasing the number of grid points, it can be concluded
that the two-layer approach is more efficient than the one-layer
approach.
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